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ABSTRACT

This exposition presents a method for incorporating a technique

known as “splitting the bump” with in an eliminatio n form reinversion

algorithm. This procedure is designed to reduce fill—in during rein—

version and should improve the efficiency of linear progr *~.n4ng systems

which already use the superior elfiwfn*tion form of the inverse.
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I. INTRODUCTION

Current production linear progra~~ hig systems are designed to

handle problems with 8000 to 16,000 r ows and 1000 row problems are

considered to be medium sized (see [10, 17]. Fortunately real pro-

blems tend to be sparse (the density of the constraint matrix is

often less than 12 — see (1, 2, 9, 14, 15]). Hence, a basis for a

1000 row problem may have only (1000) (1000) (12) — 10,000 nonzero

entries. However, the inverse (which is required for the revised

simplex algorithm) may be quite dense having almost a million nonzero

elements. Consequently , one of the moat important design considerations

for a computer implementation of the revised simplex algorithm for general

linear programs is the technique used to maintain and update the basis

inverse.

In order to minimize the storage required to implement this algo-

rithm, production linear progr*~~ tng systems maintain the inverse of

the basis in either product or elimination form (see [1, 3, 8, 12, 17]).

Computationally the inverse is stored as a sequence of vectors , known

as e.ta VeCtofl.6, and the complete list of the eta’ s is called the ETA

FLit. Each basis change (pivot) results in appending at least one eta

vector to the ETA File. Since both the time p.r pivot and numerical

error increase as the length of the ETA Pile incre ases, it is necessary

to periodically obtain a new factori zation of the basis inverse. This

proc ess of obtaining a new factorizatio n is called 4e4.nutfl6L05. The

objective of a reinversion algorithm is to obtain a factored inverse

(i.e. , ETA Pile ) in which the sparsity characteristics of the original

basis are preserved as ach as possible.
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The simplest reinversion technique for a given m—columo basis

can be thought of as successively reducing the basis to an identity

matrix via a pivot operat ions. The matrices which accomplish this

reduction -constitute the ETA File, often ref ered to as a product form

factorization . Out of this simple approach, reinversion techniques

have evolved which attempt to obtain a sparse facto r ization by selection

of pivot positions, involving a reordering of the colu~~s of the basis

and a conceptual reordering of the rows. The row and col*~~ pivot

ordering employed in reinvers ion is usually called the pivot agenda..

Marko witz L 11] pioneered the work in this area . Another technique

(see (8] and (13]) which has been used in conj unction with the reinversion

algorithms is a technique known as 4p .Utt~.ng thL btimp. All these ideas

were directed toward developing a sparse repres entation using th. product

form of the inverse . Recentl y, however, computat ional evidence indicates

that the e14~4n*tion form factori zation is superior to the product form

factoriza tion (with respect to both storage requir ements and speed (see [2]).

The Rellerman—Ra rick algorithm can be easily modified to acco~~odate

an elimination form reinversi on, but it is not obvious how one y ia-

plement the technique known as “splitting the bump” and still make it

possible to maintain the eli~dn.tion form of the inverse during later

simplex iterations. The objective of this exposition is to present a

reinveraion algorithm in which one may achieve some of the benefits of

the “splitting the bump technique” when using the elimination form

of the inverse.
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For this exposition, the jth col~~~ of the m x m matrix B is denoted

by 3(i). The symbol e~ denotes the a—component col~~ vector having

component one and all other components zero . The symbol Ti denotes

an a-component colt~~ vector and denotes the ~th component of this vector.

3
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II. PACTORIZATION ALGORITHMS

Let B be any in by in .nonsingular matrix. In this section we present

two algorithms for obtaining a factorization of B 1. The first algorithm

produces a product form factorization which corresponds to the method

for solving a system of linear equations known as Gauss—Jordan reduction

while the second algorithm produces an elimination form factorization

which corresponds to a Gauss reduction (see (4]).

By row and columo interchanges, B may be placed in the following

form:

where 31 and 33 are lower triangular matrices with nonzeroes on their

diagonals. We assume that if 32 is nonvacuo us , every row and coli~~

has at least two nonzero entrie s , so that no rearrangement of ~2 can

expand the size of B1 or 33
• 32 is called the bw~~, me.*L.t, or kew~.t

4tCtA.OII. We further require the heart section to assume the following

form :
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where Gk,s are either vacuous or lower triangular with nonzeroes on

the diagonal. The only partitions in B having colu~~s with nonzeroes

above the diagonal are the Fk,s which are called tZte.knai bumpo . The

columos extending above the diagonal are called Api.kt6 or 4p.ikt eoiwiv&o .

An external bump is characterized as follows:

(i) the last coli~~ of an external bump will

be a spike with a nonzero lying in the

topmost row of the external bump , and

(ii) the nonspike co1i~~ s have nonzero diagonal

elements.

The algorit hms of Hellerman and Rarick (6 , 7] produce such a structure

for any nonsingular matrix B, and we shell call a matrix having this

struc ture an HR matr ix.

Tb. product form factorization algorithm for an HR matrix is

given as follows :

ALG 1: PROVUCT FORM FAcTORIZATl~)i FOR A HR UTRIX

0. I s tAaL4zatLon

Set i • 1 and 8 ~ 1(1) .

5 
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1. Ob.ta4n New ETA

(l/8j . for k — i
Set ~~ ~~~~ otherwise,

i (Ti, f or k i
and set E (k) 4- I~ k

, otherwise.

(Note: only fl and i need be saved in the ETA File)

2. Te3t Fox Te,vüita.tion

If i — a, terminate , otherwise , i + I + 1.

3. Te4t Fox Spike

If B(i) is not a spike, set 8 • B(i) and go to 1.

4. Spü~ Upda.te

Let B(k) correspond to the first columo of the external bump

containing B(i) . Set 8~ - E~~1 
•“ EkB(i) .

5. &ux*p Spike o I~ Pwot ELemen t EQw724 Zexo

If ~ 0, go to 1; othe rwise , there is some spike 3(j) in the

same external bump having j  > i such that the ith component of

•.. EkB(j ) is nonzero. Set 8 + E~~
1 

•.. EkB(j) , interchange

3(i) and 8(j ) and go to 1.

In practice, th. test for a zero pivot element in step 5 is uau.lly

replaced by a tolerance test. Let TOL denote the tolerance to be used in
— th. test. If I < TOL, then 81 is treated as if it is zero. Discuss-

ions of tolerances may be found in [1.2, 15, 16]. S4~ {Ii r tolerance tests

6
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would ordinarily be incorporated in the other algorithms to be presented

in this exposition. To simplify the presentation they have been omitted here.

Justification for ALG 1 is given in (5]. At termination, B~~ —

E1SEm_l ... E1. Furthermore , we see that for nonspike columos, each

8 and consequently each Ti has exactly the same number of nonzeroes as the

corresponding co1u~an of B. However , the Ti for a spike columo may have

a higher density than the orig inal coluen of B. The phenomena of an

Ti having a higher density than the corresponding columo of B is known

as

It is weU known that fill—in may be reduced by applying an elimi—

nation form factorization rather than the product form (see [1]). The

elimination form algorithm for an HR matrix is given as follows:

ALG 2: ELIMINATION FORM FACTORZZATION FOR A HR MATRIX

0. 1r2.tiAUza *diOn

Set I + 1, r + 0, and 8 • B(l) .

1. Ob.t&’,n New Lov~ex Eta

1~ 8i~ for k —

Set 
~k ~

8k’8i’ for k > I

0, otherwise ,

(n, f o r k — i
and set L (k) + (

~ ~k, otherwise.

(Note : only Ti and i need be saved in the Eta P u .  for the lower fac tors)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - . _ -
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2. Te6.t F ox TeAisàIa.t2On

If i — m, terminate; otherwise , i • I + 1.

3. Te4t Fon Spike

If B(i) is not a spike, set 8 8(i) and go to 1.

4. Spike Upda2e

Let 8(k) correspond to the first columo of the external bump

containing 8(i) . Set 8 + L11 L
kB(i).

5. Swap Spikeo I £ PLuot ELemen.t EquaL4 ZeXo

If ,I 0, go to 6; otherwise , there is some spike 8(j) in

the same external bump having j > I such that the component

of L~~
1 
“ LkB(j) is nonzero. Set 8 + L

1.1 L
k
B(j) and inter-

change B(i) and B(j).

6. Ob~o2n New Uppex Eta

Set r + r + 1.

1, for k I

Set Tik 
+ —B~ , for k < i

L 0, otherwise ,

( ~ , fo r k i
set Dr (k) +

1~ .k otherwise ,

and go to 1.

(Note : only Ti and 1. need be saved in the Eta File for the upper facto rs)

8  
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At the termination of ALG 2, B~~ — .. U’L~ L1, where the upper

eta ’s are upper triangular and the lower eta ’s are lower triangular. As

with ALG 1 fill— in has been restricted to the eta ’s corresponding to spike

colu s .

I
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III. SPLITT ING THE BUMP

In an attempt to reduce the fill—in which occurs in spike columns

during a reinversion using ALC 1, a variation of the elimination form

factorization algorithm (attributed to Martin Beale, see [13]) has been

used by some practitioners. This technique has been called “splitting

the bump” after its treatment of external bump columns.

Consider a set of columns of the basis corresponding to an external

bump , say

B~~- ~~ 
)~~ ~~~~~

where F is an external bump. Suppose P contains q spikes. If we apply

the standard product form algorithm, we obtain a sets of eta’s such that

a 1 3E ~“ B B  — I j n

_ _  

)!
The eta ’s corresponding to the q spikes may incur fill—in. If we split

the bump , the fill—in can be restricted to the a rows corresponding to

F; hence , we may avoid fill—in in the last p rows. Since p may be much

10
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larger than a , the savings could be substantial. The price which must -

be paid to attain this reduction in fill—in is that each external bump

will require 2n + q eta’s rather than n. The savings in fill—in is

typically so great that it offsets the additional storage which must be

given up for the additional eta’s.

We first develop a set of n eta’s such that

E’~ E1B
3 — 

~~ 3:
where F1 has +1’s on the diagonal and zeroes below the diagonal. The

only columns having nonzeroes above the diagonal are spike columns.

Next we zero out the spikes in by developing q eta’s such that

~~~~~~~~~~~~~ E
1
B
3

” I

H

Finally, we zero out the H via the addition of a more eta’s. That is ,

•.. E~~ ... E1B3 — I

j~~~~~~ _ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~
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The product form algorithm incorporating the “splitting the bump”

technique is given as follows:

ALG 3: PROVtJCT FORM FACTORZZATION FOR A HR MATRiX ZNCLUVING SPLITTING

THE BUMP

0. ln .t~oJ.izo.tJ.on

Set i + 1, j  ~ 1, and 8 ~ 8(1) . If 3(1) is in an external bump,

to to 4.

1. Ob.ta4n New LoweJL Eta

( l/8j, for k — I
Set

L—B k/ 81, otherwise,

r ii, for k — i
and set E1(k) +

L ~~ otherwise.

Set 3 + 3 + 1.

2. Tu2 Fox Te~nii.~no.t~tn

If I — m, terminate ; otherwise, 1. • i + 1. and 8 + B(i) .

3. Tat Fox Ex~texno2 8w,~

If 3(1) is not the first colt in an external bump , go to 1.

4. I nAJ.AaLLzc4Aon Fox 8w~

Set ( i i i

I
) 

b + number of columns in this external bump

i-I
j  

12
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5. Ob~to.A.n L0WQA Eta.

~ 

l/8~, for k — I

Set 
~k + 

~ ~~k’~
8i’ for I < k < t

0, otherwise ,

( T~, for k —
and set E3 (k) /

~~ ~~ otherwise.

Set j 4 - j + l .

6. Ta~~Fox End O~~&~mp

If i t , go to 10; otherwise, I + I + 1.

7. Tea~t Fo~ Spike

If 3(1) is not a spike, set 8 + 3(1) and go to 5.

8. Spike Upda.te

+ E~~
1 ... E18(i).

9. Sunp Spi.ka I~ Pwo.t ELemen.t EquaLo Zexo

If 8i ~ 0, go to 5; otherwise, 
there I. some spike 3(r) in the

same external bump having r > 1. such that the ~~ component of

... E1B(r) is nonzero. Set 8 • E3
~~ E&B(r), interchange

B(r) and 3(i) and go to 5.

10. Obta2n Uppe’t Eta

(1.fork. i

Set Tlk
+ 

~~—Øk, f O r k < i

t... 0, otherwise,

13 
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- (r,, fork i
and set E3(k) + (

~ ~k otherwise .

Set 3 + 3  + l a n d  i + i  1.

11. Tat Fox Beg.uuvotg O~ Bump

~f j a s , set~~~+ B (i) afld go tO 13.

12. Tat Fox Spike

If 3(i) is not a spike , set i • i — 1 and go to 11; otherwise ,

set 8 + 33~~ EtB(i) and go to 10.

13. Ob.ta4it Lowe.x Eta

(1. f o r k — i

Set r)k
+ *~~Bk~ 

f o r k > t

0, otherwise,

.1 ~~, 
for k • I

and set ?~(k) + 
~ k
L e , otherwise.

Set 3 +3 + 1.

14. Tat Fox End O~ 8us~

If I — t , go to 2; othe rwise I + I + 1, set 8 + 1(1) , and go

to 13.

14
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At the ter mination of ALG 3, 3 1 — E3
~~ •.. E1. Furthermore, all

eta ’s are either upper triangular ot lover triangular, but they are

intermixed.

Recall that ALG 2 produces a set of lover triangular factors

followed by a set of upper triangular factors. If one incorporates

the “splitting the bump” technique into ALG 2 and apply it to an HR

atrlx, the lower and upper factors become intermingled. Once the

factors have become intermingled , we may no longer use the important

algorithm of Forrest and Toalin [2] to maintain the elimination form.

We now show how one may achieve a partial “splitting of the bump”

while simultaneously maintaining a partitioning of the upper and lower

factors.

Recall that an HR matrix takes the following form :

31 
_

3
6 

3
5 

3
3 

_________________

ALG 3 (Product Pactori zatio n With Splitting The Bump) eliminates all.

fill—in in 35
• By a rearrangement of rows and co1t~~ s, B may be placed

in the following form:

15
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~3 ~6 ~5

:4 82

U V V

where ~
6 and ~5 are row per mutations of ~6 and B~, respectively , and

is a row and column per mutation of B3 . Applying a variation of

ALG 2 to I eliminates all fill—in in while representing B —l as a

product of upper factors followed by a product of lower facto rs. The

detai ls are given in the following algorithm.

ALG 4z ELiMiNATiON FORM FACTORZZATZON FOR A MOVIFTEV HR MATRiX

0. in tiaUza.t~on .. 
-

Seti+u+land8+j (i ). 1fv 0,go to 3.

1. Ob.t&i.n New LowelL Eta

~ 
l/~~ , for k — i

Set 
~
8k’8i. for k> I

0, otherwise ,

i ( T I ,  f o r k i
and set L (k) + ~

- j I~ e
b , otherwise .

4  16 
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2. Teo.t Fox End O~ Sec.tA.on 2

Set i + I + 1 and 8 + i(i) . If I < u + v , go to 1. If w — 0,

to to 8.

3. Obta.i~n New Lowe/i Eta

f o r k — i

Set 
~k 

_B
k/8j , f o r k > i

0, othe rwise ,

( TI, f O r k i
and set L (k)~~

~ .k otherwise .

4. Tat Fox End O~ Sec.t~on 3

if i — m , go to 8; otherwise, I + i + 1.

5. Tat Fox Spike

If 1(1) is not a spike, set 8 + 1(i) and go to 3.

6. Spike Updote

Set 8~ - L11

7. &.iap Spike.4 I~ P~.vo.t ELement Equa.L4 Zexo

If # 0, go to 3; otherwise, there is some spike 8(3) in the

same external bump having 3 > I such that the 1th component of

L11 ~~ Lt~~~HI(j ) is nonzero. Set 8~~ L~~
1 

~~~~~

interchange 1(i) and 1(j ) and go to 3.

17 -~~~~ -~~~ 
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8. Ob.ta4~n New Uppeli Eta

I
Set 

~k + 8k’ for k ~ I

0, otherwise ,

i ( f l , f o r k ” i
and set U (k) + (

e , othe rwise .

9. Check Fox End O~ Sec.tJ.on 2

Set I + i — 1. If I — 0, terminate .

If i — u , set 8 + B(i) and go to 12.

10. Set CoLumn

If I > u + r , set B + ... L’~~~~i(i) ; otherwise,

set B + 1(1) . Go to 8.

11. Ob.toAn New Uppa Eta

r 1/Bi , for k —

Set Tl
k

+

L 0, otherwise,

( 
~~, 

for k •
and set Ut(k) ~

(
~ ek, otherwise.

12. Check Fox Tenj i~.j *a.tLon

If I • 1, terminate; otherwise 8 + 1(1) and go to 11.

S ~



At the termination of ALG 4 , i —l — U~L~ “ L”~~ , and the fill—in

has been restricted to 32~ Hence, ALG 4 gains some of the benefits

of the “splitting the bump” technique while maintaining a partition-

ing of the upper and lower factors. The benefits are not as great

as with ordinary “b*~~ splitting ” since each individual external bump

is split, whereas here the split is with respect to the entire heart

section.

A variation of ALG 4 has also been used by Tomlin [15]. Our

contribution is that we have tied together the ideas of “splitting

the bump” in both the product and elimination form factorizations

and we have explicitly indicated via ALG ’ s 3 and 4 how these may be

implemented.

L _ 19
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